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Motivation

Decision-making pipeline in Autonomous Driving

Progress has been made (Paden et al. 2016)
I route planning is solved
I reliable techniques exist for motion planning and control

Current limitations
I Implementations rely on hand-crafted rules such as FSM

tailored for specific cases, won’t scale to complex scenes
I Social interactions are difficult to model explicitly:

poor negotiation abilities, "freezing robot" problem

We frame the problem in a sequential learning setting

Reinforcement learning
Optimal control under unknown dynamics T (st+1|st, at)

max
π

E

[ ∞∑
t=0

γtr(st, at)

∣∣∣∣∣ at ∼ π(st), st+1 ∼ T (st, at)
]

︸ ︷︷ ︸
policy return RTπ

(1)

Model-free methods directly optimize π(at|st) through policy
evaluation and policy improvement.

Model-based methods

1. Learn a model for the dynamics T̂ (st, at)
2. (Planning) Leverage it to compute

max
π

E

[ ∞∑
t=0

γtr(st, at)

∣∣∣∣∣ at ∼ π(st), st+1 ∼ T̂ (st, at)
]

I Better sample efficiency, interpretability
I Model bias: T̂ 6= T

Robust optimization
1. Build a confidence region T around T

∀T ′ ∈ T, P(||T − T ′|| > ε) < δ

2. Plan robustly with respect to this ambiguity

max
π

min
T∈T

E
∞∑
t=0

γtrt︸ ︷︷ ︸
vr(π)

(2)

One-step game between the planner and the environment:
1. the learner reveals its policy π
2. the adversary chooses the worst-case dynamics T

Assumption

We consider deterministic systems: st+1 = T (st, at)

Challenge

How to optimize this objective?
• Linear system: H∞ control, robust LQ
• Finite state-space: Robust Dynamic Programming
• Non-linear continuous system: ?

Discrete ambiguity and tree-based planning
Assumption

The ambiguity set T and the action space A are discrete and finite: T = {Tm}m∈[1,M ] and A = {ak}k∈[1,K]
We propose a robust version of optimistic planning for deterministic systems (Hren and Munos 2008)

Definition 1. Given node i ∈ T , define
The robust value:

vri
def= max

π∈iA∞
min

m∈[1,M ]
RTmπ

The robust u-value:

uri (n) def=

 min
m∈[1,M ]

∑d−1
t=0 γ

trt if i ∈ Ln ;

max
a∈A

uria(n) if i ∈ Tn \ Ln

The robust b-value:

bri (n) def=

 min
m∈[1,M ]

∑d−1
t=0 γ

trt + γd

1−γ if i ∈ Ln ;

max
a∈A

bria(n) if i ∈ Tn \ Ln

Remark 1 (Ordering of min and max). Naive comparison of ac-
tion values between the different models do not recover the robust policy
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Theorem 1 (Regret bound). Algorithm 1 enjoys a simple regret of:

If κ > 1, Rn = O

(
n
− log 1/γ

logκ

)
(3)

If κ = 1, Rn = O

(
γ

(1−γ)β
c n

)
(4)

Optimistic evaluation of 

paths at the leaves for all 

dynamics

Worst-case 

aggregation 

over the M 

dynamics

min
m

Optimal planning of action 

sequences

max
a

Variables
computational budget n
near-optimal branching factor κ
simple regret Rn = vr − vra(n)

Algorithm 1: Deterministic Robust
Optimistic Planning

1 Initialize T to a root and expand it.
Set n = 1.

2 while Numerical resource available
do

3 Compute the robust u-values
uri (n) and robust b-values bri (n).

4 Expand arg maxi∈Ln b
r
i (n).

5 n = n + 1
6 return a(n) = arg maxa∈A ura(n)

Continuous ambiguity and interval-based planning
Approximate the robust objective by a tractable surrogate.

Definition 2. Given a policy π and current state s0, define
The reachability set S at time t:

S(t, s0, π) def={st : ∃T ∈ T s.t. sk+1 = T (sk, π(sk))}

The interval hull �S = [s, s] (Puig et al. 2005)

s(t, s0, π) def=minS(t, s0, π) s(t, s0, π) def=maxS(t, s0, π)

The surrogate objective v̂r

v̂r(π) def=
H∑
t=0

γt min
s∈�S(t,s0,π)

r(s, π(s)) (5)

The approximate performance of a policy is guaranteed on the true
environment.

Proposition 1 (Lower bound). The surrogate objective v̂r is
a lower bound of the true objective vr:

∀π, v̂r(π) ≤ vr(π) (6)

Algorithm 2: Interval-based Robust Control
1 Algorithm robust_control(s0)
2 Initialize a set Π of policies
3 while resources available do
4 evaluate() each policy π ∈ Π at current state s0
5 Update Π by policy search
6 end
7 return arg maxπ∈Π v̂

r(π)
1 Procedure evaluate(π, s0)
2 Compute the state interval �S(t, s0, π) on a horizon t ∈ [0, H]
3 Minimize r over the intervals �S(t, s0, π) for all t ∈ [0, H]
4 return v̂r(π)

Experiments
We introduce highway-env, a new environment for simulated highway driving and tactical decision-makinga.
In these experiments, the ego-vehicle is approaching a roundabout with flowing traffic.
We first consider ambiguity with respect to the possible destination of each vehicle (fig a), and then w.r.t. their driving style (fig b).

(a) Discrete ambiguity (b) Continuous ambiguity

Ambiguity Agent Worst-case Mean ± std
None Oracle 9.83 10.84± 0.16

Discrete Nominal 2.09 8.85± 3.53
Algorithm 1 8.99 10.78± 0.34

Continuous Nominal 1.99 9.95± 2.38
Algorithm 2 7.88 10.73± 0.61

(c) Results

aVideo and source code are available at https://eleurent.github.io/robust-control/
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