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Motivation
We consider the optimal control of an MDP M =
(S, A,R, T, γ) with bounded rewards R ∈ [0, 1]

R and T are unknown
Access to a generative model s′ ∼ P (s′|s, a) and r ∼
P (r|s, a)
Fixed-budget setting: the generative model is costly ,
can only be queried n times

UCT: doubly-exponential −→ OPD: polynomial , deterministic

Open-Loop Optimistic Planning
OLOP algorithm introduced in [Bubeck and Munos 2010].

1. Sample M sequences of actions of fixed length L

2. Use the return structure to generalise to unseen se-
quences

3. Be Optimistic in the Face of Uncertainty
in observed and future rewards

Algorithm 1: General structure for Open-Loop Op-
timistic Planning
1 for each episode m = 1, · · · , M do
2 Compute Ua(m− 1) from (2) for all a ∈ T
3 Compute Ba(m− 1) from (3) for all a ∈ AL

4 Sample a sequence with highest B-value:
am ∈ arg maxa∈AL Ba(m− 1).

5 return the most played sequence a(n) ∈ arg maxa∈AL Ta(M)

What’s wrong with OLOP?
Overly optimistic , especially in the low-budget regime.
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Intuitive explanation:

• Unintended behaviour happens when Uµa (m) > 1,∀a.
• Then the sequence (Ua1:t(m))t is non-decreasing
• Then Ba(m) = Ua1:1(m)

OLOP behaves as uniform planning!

Kullback-Leibler OLOP
We summon the upper-confidence bound from kl-UCB [Cappé et al. 2013]:
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}
Algorithm OLOP KL-OLOP
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Conversely,

• Uµa (m) ∈ I = [0, 1],∀a .

• The sequence (Ua1:t(m))t is non-increasing

• Ba(m) = Ua(m), the bound sharpening step is superfluous.

Sample complexity
Theorem 1 (Sample complexity). KL-OLOP enjoys the same asymptotic regret bounds as OLOP. More precisely, KL-OLOP
satisfies:
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Time and memory complexity
Original KL-OLOP
Compute Ba(m− 1) from (3) for all a ∈ AL
Lazy KL-OLOP

Theorem 2 (Consistency). Algorithm 2 is identical
to Algorithm 1.

Algorithm 2: Lazy Open Loop Optimistic Planning
1 Let T +

0 = L+
0 = {∅}

2 for each episode m = 1, · · · , M do
3 Compute Ua(m− 1) from (2) for all a ∈ T +

m−1

4 Compute Ba(m− 1) from (3) for all a ∈ L+
m−1

5 Sample a sequence with highest B-value:
a ∈ arg max

a ∈ L+
m−1

Ba(m− 1)

6 Choose an arbitrary continuation am ∈ aAL−|a|// e.g.
uniformly Let T +

m = T +
m−1 and L+

m = L+
m−1

7 for t = 1, · · · , L do
8 if am

1:t 6∈ T
+

m then
9 Add am

1:t−1A to T +
m and L+

m

10 Remove am
1:t−1 from L+

m

11 return the most played a(n) ∈ arg max
a∈L+

m
Ta(M)

Property 1 (Time and memory complexity).

C(Lazy KL-OLOP)
C(KL-OLOP) = nA

AL

Experiments

Average return over 100 runs — along with its 95% confidence interval — with respect to the available budget n

Expanded trees for a budget n = 103
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