

Practical Open-Loop Optimistic Planning Edouard Leurent, Odalric-Ambrym Maillard

Motivation

We consider the optimal control of an MDP \mathcal{M} = $(\mathcal{S}, A, R, T, \gamma)$ with bounded rewards $R \in [0, 1]$

- $\rightarrow R$ and T are unknown
- \vdash Access to a generative model $s' \sim \mathbb{P}(s'|s, a)$ and $r \sim \mathbb{P}(s'|s, a)$ $\mathbb{P}(r|s,a)$
- **Fixed-budget** setting: the generative model is costly, can only be queried n times
- UCT: doubly-exponential \rightarrow OPD: polynomial, deterministic

Open-Loop Optimistic Planning

OLOP algorithm introduced in [Bubeck and Munos 2010].

1. Sample M sequences of actions of fixed length L

Kullback-Leibler OLOP

We summon the upper-confidence bound from k1–UCB [Cappé et al. 2013]:

$$U_a^{\mu}(m) \stackrel{\text{def}}{=} \max\left\{q \in I : d(\hat{\mu}_a(m), q) \le \frac{f(m)}{T_a(m)}\right\}$$

_	Algorithm	OLOP	KL-OLOP
_	Interval I	\mathbb{R}	[0, 1]
	Divergence d	$d_{ t QUAD}$	$d_{\mathtt{BER}}$
	f(m)	$4\log M$	$2\log M + 2\log\log M$

 $d_{\text{QUAD}}(p,q) \stackrel{\text{def}}{=} 2(p-q)^2$ $d_{\text{BER}}(p,q) \stackrel{\text{def}}{=} p \log \frac{p}{r} + (1-p) \log \frac{1-p}{1-r}$

2. Use the return structure to generalise to unseen sequences

3. Be Optimistic in the Face of Uncertainty

in observed and future rewards

Algorithm 1: General structure for Open-Loop Optimistic Planning

U Conversely,

• $U_a^{\mu}(m) \in I = [0, 1], \forall a$.

with

- The sequence $(U_{a_{1:t}}(m))_t$ is non-increasing
- $B_a(m) = U_a(m)$, the bound sharpening step is superfluous.

Sample complexity

Theorem 1 (Sample complexity). KL-OLOP enjoys the same asymptotic regret bounds as OLOP. More precisely, KL-OLOP satisfies:

$\mathbb{E} r_n = \begin{cases} \widetilde{0} \left(n^{-\frac{\log 1/\gamma}{\log \kappa'}} \right), & \text{if } \gamma \sqrt{\kappa'} > 1\\ \widetilde{0} \left(n^{-\frac{1}{2}} \right), & \text{if } \gamma \sqrt{\kappa'} \le 1 \end{cases}$

Time and memory complexity

Original KL-OLOP Compute $B_a(m-1)$ from (3) for all $a \in A^L$ Lazy KL-OLOP

Algorithm 2: Lazy Open Loop Optimistic Planning

- 1 Let $\mathcal{T}_0^+ = \mathcal{L}_0^+ = \{\emptyset\}$ 2 for each episode $m = 1, \dots, M$ do

for $t = 1, \cdots, L$ do

if $a_{1:t}^m \not\in \mathcal{T}_m^+$ then

- Compute $U_a(m-1)$ from (2) for all $a \in \mathcal{T}_{m-1}^+$ 3
- Compute $B_a(m-1)$ from (3) for all $a \in \mathcal{L}_{m-1}^+$ 4
- Sample a sequence with highest B-value: $\mathbf{5}$
 - $a \in \arg\max_{a \in \mathcal{L}_{m-1}^+} B_a(m-1)$
 - Choose an arbitrary continuation $a^m \in aA^{L-|a|}//$ e.g.

uniformly Let $\mathcal{T}_m^+ = \mathcal{T}_{m-1}^+$ and $\mathcal{L}_m^+ = \mathcal{L}_{m-1}^+$

Add $a_{1:t-1}^m A$ to \mathcal{T}_m^+ and \mathcal{L}_m^+

Remove $a_{1:t-1}^m$ from \mathcal{L}_m^+

11 return the most played $a(n) \in \arg \max_{a \in \mathcal{L}_m^+} T_a(M)$

- Unintended behaviour happens when $U_a^{\mu}(m) > 1$, $\forall a$.
- Then the sequence $(U_{a_{1:t}}(m))_t$ is non-decreasing
- Then $B_a(m) = U_{a_{1:1}}(m)$

Theorem 2 (Consistency). Algorithm 2 is identical to Algorithm 1.

Property 1 (Time and memory complexity).

C(Lazy KL-OLOP)nA $\frac{1}{A} = \frac{1}{A^L}$ C(KL-OLOP)

6

7

8

9

 $\mathbf{10}$

Olivier Cappé et al. "Kullback-Leibler Upper Confidence [2]Bounds for Optimal Sequential Allocation". In: The Annals of Statistics 41.3 (2013), pp. 1516–1541